Statement of Verification

BREG EN EPD No.: 000511

Issue 01

This is to verify that the

Environmental Product Declaration provided by:

LSI Stones

is in accordance with the requirements of:

EN 15804:2012+A1:2013

anc

BRE Global Scheme Document SD207

This declaration is for: **1m³ of Limestone Slabs**

Company Address

LSI Stone IC2 km 104, 2480-093 Pedreiras, Leiria, Portugal

BRE/Global

EPD

TIE

FBaker	Emma Baker	21 July 2023	
Signed for BRE Global Ltd	Operator	Date of this Issue	
21 July 2023		20 July 2028	
Date of First Issue		Expiry Date	
			ECO PLATFORM
	This Statement of Verification is issued	subject to terms and conditions (for details	the second se

visit <u>www.greenbooklive.com/terms</u>. To check the validity of this statement of verification please, visit <u>www.greenbooklive.com/check</u> or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

BF1805-C-ECOP Rev 0.3

Page 1 of 11

© BRE Global Ltd, 2022

Environmental Product Declaration

EPD Number: 000511

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013
Commissioner of LCA study	LCA consultant/Tool
LSI Stone 20 Old Bailey, Suite 523 London EC4M 7BF United Kingdom	LCA consultant: Bala Subramanian Tool: BRE LINA v2.0
Declared/Functional Unit	Applicability/Coverage
1 m ³ of Limestone Slabs	Product Average.
ЕРД Туре	Background database
Cradle to Gate	ecoinvent
Demonstra	ation of Verification
CEN standard EN 15	5804 serves as the core PCR ^a
Independent verification of the declara	ation and data according to EN ISO 14025:2010 ⊠ External
(Where approp	riate ^b)Third party verifier: Nigel Jones
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)
Co	mparability
Environmental product declarations from different EN 15804:2012+A1:2013. Comparability is further dep and allocations, and background data sources. See Cla	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

ſ	Produc	+	Const	ruction				Use sta	ge				End	of life		Benefits and loads beyond
	FIOUUC		Const	ruction	Rel	ated to	the bui	lding fa	ıbric	Relat the bu	ed to uilding		Ena-	JI-IIIe		the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\checkmark	$\mathbf{\nabla}$	\checkmark														

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

LSI Stone IC2 km 104, 2480-093 Pedreiras, Leiria, Portugal

Construction Product

Product Description

Limestone is a common type of carbonate sedimentary rock that is mainly composed of calcium-bearing carbonate minerals such as calcite and dolomite. Impurities such as clay, sand, iron oxide and other minerals cause limestone to exhibit different colours, especially on weathered surfaces. Limestone has high corrosion resistance and is composed of fine-grained particles that may be compacted to increase its overall strength. In line with its physical properties, it is used in the construction industry for various applications such as slabs for cladding, floors and stairs, external paving, tiles and as rough slabs. This EPD represents 1m³ of limestone slabs with a density of 2,430 kg/m³.

Technical Information

Property		Value, Unit
[EN 13501-1] Reaction to fin	re Class	A1
[EN 12372] Flexural tensile	8-16 Mpa	
[EN 12371] Flexural strengt	7-15 Mpa	
[EN 1936] Apparent density	2210-2650 kg/m3 & 5-8 %	
[EN 13755] Water absorptio	on at atmospheric pressure	1-5 %
[BR141] Saturation coefficie	ent	0.85-0.89
[EN 13364] Determination c	of breaking load at dowel hole (30 mm)	1700-2100 N
[EN 14157] Abrasion		18-26 mm
[EN 14231] Slip resistance	55-75 PTV Wet, 65-85 PTV Dry	
	Date of Issue:21 July 2023 Page 3 of 11	Expiry Date 20 July 2028 © BRE Global Ltd, 2022

Property	Value, Unit
[EN 1926] Compressive strength	80-160 Mpa
EN 1469:2015 – Natural stone products	Slabs for cladding
EN 12057:2015 – Natural stone products	Modular tiles
EN 12058:2015 – Natural stone products	Slabs for floors and stairs
EN 1341:2014 – Natural stone products	Slabs of natural stone for external paving
EN 1342:2014 – Natural stone products	Setts of natural stone for external paving
EN 1343:2014 – Natural stone products	Kerbs of natural stone for external paving
EN 1468:2012 – Natural stone products	Rough Slabs

Main Product Contents

Limestone is a chemical sedimentary rock, which forms from the solidification of minerals out of solution into rock form. The main component of limestone is calcium carbonate (CaCO3),

Material/Chemical Input	%
Calcium (ca)	40%
Carbon	12%
Oxygen (O2)	48%

Manufacturing Process

The limestone extraction process involves drilling and cutting large cubes of stone from the rock base.

Block production will be initiated by drilling vertical and horizontal holes in the limestone base with the help of modern equipment equipped with diamond drilling tools and powered through electric power sources. Diamond-wire tools, powered by electric spinning machines, will be passed through these holes in the limestone bed and will separate the natural stone rock, delivering transportable-size blocks of natural limestone. The block manufacturing process will result in dimensional stone-sized blocks, but the extraction process will also deliver small pieces of rock that might not be suitable for dimensional stone products. In this

case, natural material is classified as a sub-product for industrial stone-related industries, such as lime, cement, and aggregate.

Natural stone blocks of different sizes will be moved inside the limestone extraction area with heavy transport equipment powered by diesel motors and parked for inspection and preparation that might require the use, once again, of diamond cutting wire tools and electric power that will split and "clean" the block of natural material. The waste resulting from this process might once again be used in industrial applications.

Transport of the block from the extraction area to the processing plant will start with the loading of the natural stone blocks into road transport trucks, which will be accomplished with the help of electric-powered cranes or of heavy diesel-powered loading equipment. The LSI Stone processing plant will be no more than 25 kilometers away, and all transportation will be done by road, using diesel-powered trucks. At the LSI processing plant, natural limestone will be unloaded and redirected to electric cranes that will park the block inside the factory floor.

Block processing will be initiated following specific project requirements, therefore minimizing waste factors. Block will be moved to the slabbing area, requiring the use of electric cranes. Slabbing equipment will once again resource diamond-equipped tools to separate block-shaped natural material into specific-sized slabs; electric-powered tools will resource blades or wires to accomplish the process. The next step in the manufacturing process will be surface finishing, which will be done according to the specific project requirements, and diamond tools will be used to process the stone surface in search of the desired natural stone finish. Natural material with the appropriate surface finish will then be transported to the cutting area.

Different cut-to-size machines will proceed with cutting and carving depending on project requirements. The waste resulting from this process could be in the form of sludge or rock. Sludge will be processed in LSI's water recycling unit, which will separate water from stone residues. Water will be reused in the system, and sludge will be dried and used for industrial uses. Rock-shaped waste will be transported with the help of underground conveyors to a crushing unit at the factory that will transform this waste into aggregate size, also ready to be used for industrial applications. Stone will be transported to the packaging area, where custom-made wood crates will be used to carefully pack the natural stone products.

Process flow diagram

Life Cycle Assessment Calculation Rules

Declared unit description

1 m³ of Limestone Slabs

System boundary

This is a cradle-to-gate EPD, reporting all production life cycle stages (modules A1 to A3) in accordance with EN 15804:2012+A1:2013.

Data sources, quality and allocation

Datasets are derived from ecoinvent v3.2 (2015) and the LCA tool used was BRE LINA v2.0. The LCA models and reports the production stage modules, A1 to A3 and includes limestone extraction and quarry processing.

The LSI Stone factory produces other products in addition to limestone slabs. An allocation to fuel consumption, water consumption & discharge, and waste was required. The allocation factor was based on the total production output of the limestone slabs compared to the total production output of the LSI Stone site over the data collection period (01/01/21 - 31/12/21).

Unprocessed limestone blocks are the raw material input to the LSI factory, though there was no limestone dataset in the background database. However, data was obtained for the extraction of limestone from the quarry, so with the use of the given data, a specific "limestone quarry process" dataset was modelled and fed into LINA to represent limestone as a raw material.

In this EPD, two results tables have been displayed: limestone processing impacts from green electricity and impacts from national grid. The LSI Stones confirmed (by submitting external and independent certification) that they are using green electricity and that they shared the green electricity contract with the mix percentage of renewables. By using that, a new green electricity dataset was modelled in SimaPro and fed into LINA to represent the Green electricity.

However, accrding to the EN 15804, when calculating impacts associated with standard energy supply national or regional average energy models shall be used. In line with that, the impacts are analysed for national electricity and displayed in another table. The dataset used for calculating the impacts from national grid was Electricity, Portugal (kWh) {Ecoinvent 3.6}.

The quality level of geographical and technical representativeness is therefore Very Good. The quality level of time representativeness is Fair as the background LCI datasets are based on ecoinvent v3.2 which was compiled in 2015. Therefore, there is approximately 5-6 years between the ecoinvent LCI reference year and the time for which the LCA was undertaken.

Cut-off criteria

All the raw materials, ancillary materials, process energy, general energy, water use/discharge and production waste have been included during the limestone extraction and processing. Direct emissions to air, water, and soil are not measured.

Date of Issue:21 July 2023 Page 6 of 11

LCA Results – Limestone Processing using the Green Electricity

Parameters describing environmental impacts

	.								
			GWP	ODP	AP	EP	POCP	ADPE	ADPF
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.
	Raw material supply	A1	3.67E+01	6.47E-06	2.70E-01	6.46E-02	4.38E-02	2.30E-05	5.32E+02
Product store	Transport	A2	2.96E+01	5.44E-06	1.00E-01	2.67E-02	1.78E-02	7.88E-05	4.47E+02
Product stage	Manufacturing	A3	-1.97E+00	1.93E-05	9.81E-01	4.40E-01	1.93E-01	1.82E-03	3.27E+03
	Total (of product stage)	A1-3	6.43E+01	3.12E-05	1.35E+00	5.31E-01	2.54E-01	1.92E-03	4.25E+03

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy

		PERE	PERM	PERT	PENRE	PENRM	PENRT	
		MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	1.80E+01	6.72E-01	1.87E+01	5.28E+02	0.00E+00	5.28E+02
Draduatataaa	Transport	A2	6.12E+00	2.47E-05	6.12E+00	4.44E+02	0.00E+00	4.44E+02
Product stage	Manufacturing	A3	7.66E+03	3.14E-02	7.66E+03	3.32E+03	9.57E+01	3.42E+03
	Total (of product stage)	A1-3	7.68E+03	7.03E-01	7.68E+03	4.29E+03	9.57E+01	4.39E+03

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m³			
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	1.16E-01			
Draduat ataga	Transport	A2	0.00E+00	0.00E+00	0.00E+00	9.81E-02			
Product stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	2.06E+01			
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	2.08E+01			

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

Other er	nvironmenta	l informa	ition descr	ibing wast	e categories	

			HWD	NHWD	RWD
			kg	kg	Kg
	Raw material supply	A1	3.83E-01	3.83E-01	0.00E+00
Droduct store	Transport	A2	1.96E-01	2.05E+01	3.08E-03
Product stage	Manufacturing	A3	1.31E+01	2.53E+01	8.93E-03
	Total (of product stage)	A1-3	1.37E+01	4.62E+01	1.20E-02

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life									
			CRU	MFR	MER	EE			
			kg	kg	kg	MJ per energy carrier			
	Raw material supply	A1	1.64E+03	0.00E+00	0.00E+00	0.00E+00			
Broduct stops	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Product stage	Manufacturing	A3	4.85E+03	9.78E-02	0.00E+00	0.00E+00			
	Total (of product stage)	A1-3	6.49E+03	9.78E-02	0.00E+00	0.00E+00			

CRU = Components for reuse; MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

LCA Results – Limestone Processing using the National Grid

Parameters describing environmental impacts

			GWP	ODP	AP	EP	POCP	ADPE	ADPF
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.
Product stage	Raw material supply	A1	3.67E+01	6.47E-06	2.70E-01	6.46E-02	4.38E-02	2.30E-05	5.32E+02
	Transport	A2	2.96E+01	5.43E-06	1.00E-01	2.66E-02	1.78E-02	7.87E-05	4.46E+02
	Manufacturing	A3	4.76E+02	5.60E-05	4.34E+00	9.90E-01	3.86E-01	1.91E-03	1.02E+04
	Total (of product stage)	A1-3	5.42E+02	6.79E-05	4.71E+00	1.08E+00	4.48E-01	2.02E-03	1.12E+04

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
Product stage	Raw material supply	A1	1.80E+01	6.72E-01	1.87E+01	5.28E+02	0.00E+00	5.28E+02		
	Transport	A2	6.11E+00	2.47E-05	6.11E+00	4.44E+02	0.00E+00	4.44E+02		
	Manufacturing	A3	6.08E+03	3.17E-02	6.08E+03	1.09E+04	9.57E+01	1.10E+04		
	Total (of product stage)	A1-3	6.11E+03	7.03E-01	6.11E+03	1.19E+04	9.57E+01	1.20E+04		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water								
			SM	RSF	NRSF	FW		
			kg	MJ net calorific value	MJ net calorific value	m³		
Product stage	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	1.16E-01		
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	9.80E-02		
	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	7.10E+00		
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	7.31E+00		

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

 $\label{eq:NRSF} \begin{array}{l} \mbox{NRSF} = \mbox{Use of non-renewable secondary fuels}; \\ \mbox{FW} = \mbox{Net use of fresh water} \end{array}$

LCA Results (continued)

Othor.	a muli ka mma a m	tol informat	ion dooorihing	waata aatagariga
Unier	envicol nen			waste categories
				inadio datogenioo

			HWD	NHWD	RWD	
			kg	kg	Kg	
Product stage	Raw material supply	A1	3.83E-01	3.83E-01	0.00E+00	
	Transport	A2	1.95E-01	2.05E+01	3.07E-03	
	Manufacturing	A3	1.28E+01	3.40E+01	2.46E-02	
	Total (of product stage)	A1-3	1.34E+01	5.49E+01	2.77E-02	

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life									
			CRU	MFR	MER	EE			
			kg	kg	kg	MJ per energy carrier			
Product stage	Raw material supply	A1	1.64E+03	0.00E+00	0.00E+00	0.00E+00			
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Manufacturing	A3	4.85E+03	9.78E-02	0.00E+00	0.00E+00			
	Total (of product stage)	A1-3	6.49E+03	9.78E-02	0.00E+00	0.00E+00			

CRU = Components for reuse; MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

Interpretation of results:

The bulk of the environmental impacts and primary energy demand are attributed to the extraction and processing of the limestone slabs, covered by information modules A1-A3 of EN15804:2012+A1:2013.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Pre Consultants bv. Simapro 9 LCA Software 2021. http://www.pre-sustainability.com

Ecoinvent Centre. Swiss Centre for Life Cycle Inventories. http://www.ecoinvent.org